Bootstrapping Bloch bands

Author:

Tchoumakov SergueiORCID,Florens Serge

Abstract

Abstract Bootstrap methods, initially developed for solving statistical and quantum field theories, have recently been shown to capture the discrete spectrum of quantum mechanical problems, such as the single particle Schrödinger equation with an anharmonic potential. The core of bootstrap methods builds on exact recursion relations of arbitrary moments of some quantum operator and the use of an adequate set of positivity criteria. We extend this methodology to models with continuous Bloch band spectra, by considering a single quantum particle in a periodic cosine potential. We find that the band structure can be obtained accurately provided the bootstrap uses moments involving both position and momentum variables. We also introduce several new techniques that can apply generally to other bootstrap studies. First, we devise a trick to reduce by one unit the dimensionality of the search space for the variables parametrizing the bootstrap. Second, we employ statistical techniques to reconstruct the distribution probability allowing to compute observables that are analytic functions of the canonical variables. This method is used to extract the Bloch momentum, a quantity that is not readily available from the bootstrap recursion itself.

Funder

H2020 Future and Emerging Technologies

Publisher

IOP Publishing

Subject

General Physics and Astronomy,Mathematical Physics,Modeling and Simulation,Statistics and Probability,Statistical and Nonlinear Physics

Reference23 articles.

1. s-matrix theory of strong interactions without elementary particles;Chew;Rev. Mod. Phys.,1962

2. Nonhamiltonian approach to conformal quantum field theory;Polyakov;Zh. Eksp. Teor. Fiz.,1974

3. Solving the 3D Ising model with the conformal bootstrap;El-Showk;Phys. Rev. D,2012

4. The conformal bootstrap: theory, numerical techniques, and applications;Poland;Rev. Mod. Phys.,2019

5. Bootstraps to strings: solving random matrix models with positivity;Lin;J. High Energy Phys.,2020

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3