Abstract
Abstract
We present an iterative method to solve the multipartite quantum state estimation problem. We demonstrate convergence for any informationally complete set of generalized quantum measurements in every finite dimension. Our method exhibits fast convergence in high dimensions and strong robustness under the presence of realistic errors both in state preparation and measurement stages. In particular, for mutually unbiased bases and tensor product of generalized Pauli observables it converges in a single iteration.
Funder
Comissió Interdepartamental de Recerca i Innovació Tecnològica
Fondo Nacional de Desarrollo Científico y Tecnológico
Severo Ochoa
Fundació Cellex
Fundació Mir-Puig,
Government of Spain
Fondo de Fomento al Desarrollo Científico y Tecnológico
QRANGE
Ministerio de Educación, Gobierno de Chile
Subject
General Physics and Astronomy,Mathematical Physics,Modeling and Simulation,Statistics and Probability,Statistical and Nonlinear Physics