Renormalization group analysis of a self-organized critical system: intrinsic anisotropy vs random environment

Author:

Antonov N VORCID,Kakin P IORCID,Lebedev N MORCID,Yu Luchin AORCID

Abstract

Abstract We study a self-organized critical system coupled to an isotropic random fluid environment. The former is described by a strongly anisotropic continuous (coarse-grained) model introduced by Hwa and Kardar (1989 Phys. Rev. Lett. 62 1813; 1992 Phys. Rev. A 45 7002); the latter is described by the stirred Navier–Stokes equation due to Forster et al (1977 Phys. Rev. A 16 732). The full problem of two coupled stochastic equations is represented as a field-theoretic model, which is shown to be multiplicatively renormalizable. The corresponding renormalization group (RG) equations possess a semi-infinite curve of fixed points in the four-dimensional space of the model parameters. The whole curve is infrared attractive for realistic values of parameters; its endpoint corresponds to the purely isotropic regime where the original Hwa–Kardar nonlinearity becomes irrelevant. There, one is left with a simple advection of a passive scalar field by the external environment. The main critical dimensions are calculated to leading (one-loop) order (first terms in the ϵ = 4 d expansion); some of them are exact in all orders. These dimensions remain the same along that curve, which makes it reasonable to interpret it as a single universality class. However, the correction exponents do vary along the curve. It is therefore not clear whether the curve survives in all orders of the RG expansion or shrinks to a single point when the higher-order corrections are taken into account.

Funder

Ministry of Science and Higher Education of the Russian Federation

Foundation for the Advancement of Theoretical Physics and Mathematics

Publisher

IOP Publishing

Subject

General Physics and Astronomy,Mathematical Physics,Modeling and Simulation,Statistics and Probability,Statistical and Nonlinear Physics

Reference68 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3