Abstract
Abstract
This paper concerns the
Z
2
classification of Fermionic Time-Reversal (FTR) symmetric partial differential Hamiltonians on the Euclidean plane. We consider the setting of two insulators separated by an interface. Hamiltonians that are invariant with respect to spatial translations along the interface are classified into two categories depending on whether they may or may not be gapped by continuous deformations. Introducing a related odd-symmetric Fredholm operator, we show that the classification is stable against FTR-symmetric perturbations. The property that non-trivial Hamiltonians cannot be gapped may be interpreted as a topological obstruction to Anderson localization: no matter how much (spatially compactly supported) perturbations are present in the system, a certain amount of transmission in both directions is guaranteed in the nontrivial phase. We present a scattering theory for such systems and show numerically that transmission is indeed guaranteed in the presence of FTR-symmetric perturbations while it no longer is for non-symmetric fluctuations.
Funder
US National Science Foundation
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Approximations of Interface Topological Invariants;SIAM Journal on Mathematical Analysis;2024-08-05