A practitioner’s guide to quantum algorithms for optimisation problems

Author:

Symons Benjamin C BORCID,Galvin DavidORCID,Sahin EmreORCID,Alexandrov VassilORCID,Mensa StefanoORCID

Abstract

Abstract Quantum computing is gaining popularity across a wide range of scientific disciplines due to its potential to solve long-standing computational problems that are considered intractable with classical computers. One promising area where quantum computing has potential is in the speed-up of NP-hard optimisation problems that are common in industrial areas such as logistics and finance. Newcomers to the field of quantum computing who are interested in using this technology to solve optimisation problems do not have an easily accessible source of information on the current capabilities of quantum computers and algorithms. This paper aims to provide a comprehensive overview of the theory of quantum optimisation techniques and their practical application, focusing on their near-term potential for noisy intermediate scale quantum devices. The paper starts by drawing parallels between classical and quantum optimisation problems, highlighting their conceptual similarities and differences. Two main paradigms for quantum hardware are then discussed: analogue and gate-based quantum computers. While analog devices such as quantum annealers are effective for some optimisation problems, they have limitations and cannot be used for universal quantum computation. In contrast, gate-based quantum computers offer the potential for universal quantum computation, but they face challenges with hardware limitations and accurate gate implementation. The paper provides a detailed mathematical discussion with references to key works in the field, as well as a more practical discussion with relevant examples. The most popular techniques for quantum optimisation on gate-based quantum computers, the quantum approximate optimisation algorithm and the quantum alternating operator ansatz framework, are discussed in detail. However, it is still unclear whether these techniques will yield quantum advantage, even with advancements in hardware and noise reduction. The paper concludes with a discussion of the challenges facing quantum optimisation techniques and the need for further research and development to identify new, effective methods for achieving quantum advantage.

Publisher

IOP Publishing

Subject

General Physics and Astronomy,Mathematical Physics,Modeling and Simulation,Statistics and Probability,Statistical and Nonlinear Physics

Reference124 articles.

1. Algorithms for quantum computation: discrete logarithms and factoring;Shor,1994

2. Quantum machine learning framework for virtual screening in drug discovery: a prospective quantum advantage;Mensa;Mach. Learn.: Sci. Technol.,2023

3. Quantum algorithms for quantum chemistry and quantum materials science;Bauer;Chem. Rev.,2020

4. Quantum machine learning;Biamonte;Nature,2017

5. Combinatorial optimization in transportation and logistics networks;Vogiatzis,2013

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hierarchical Multigrid Ansatz for Variational Quantum Algorithms;ISC High Performance 2024 Research Paper Proceedings (39th International Conference);2024-05

2. Redesign of the Last Mile Delivery Network Using Quantum Alternating Operator Ansatz;2024 16th International Conference on COMmunication Systems & NETworkS (COMSNETS);2024-01-03

3. Quantum Optimization Methods for Satellite Mission Planning;IEEE Access;2024

4. Quantum Resilience and Distributed Trust: The Promise of Blockchain and Quantum Computing in Defense;Contributions to Environmental Sciences & Innovative Business Technology;2024

5. QUBO Formulation for Sparse Sensor Placement for Classification;Communications in Computer and Information Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3