Direct Poisson neural networks: learning non-symplectic mechanical systems

Author:

Šípka Martin,Pavelka MichalORCID,Esen OğulORCID,Grmela MiroslavORCID

Abstract

Abstract In this paper, we present neural networks learning mechanical systems that are both symplectic (for instance particle mechanics) and non-symplectic (for instance rotating rigid body). Mechanical systems have Hamiltonian evolution, which consists of two building blocks: a Poisson bracket and an energy functional. We feed a set of snapshots of a Hamiltonian system to our neural network models which then find both the two building blocks. In particular, the models distinguish between symplectic systems (with non-degenerate Poisson brackets) and non-symplectic systems (degenerate brackets). In contrast with earlier works, our approach does not assume any further a priori information about the dynamics except its Hamiltonianity, and it returns Poisson brackets that satisfy Jacobi identity. Finally, the models indicate whether a system of equations is Hamiltonian or not.

Funder

Grantová Agentura České Republiky

Publisher

IOP Publishing

Subject

General Physics and Astronomy,Mathematical Physics,Modeling and Simulation,Statistics and Probability,Statistical and Nonlinear Physics

Reference61 articles.

1. Lens-like action of a star by the deviation of light in the gravitational field;Einstein;Science,1936

2. Distribution and evolution of asteroid rotation rates [and discussion];Dermott;Phil. Trans. R. Soc. A,1984

3. Symplectically integrated symbolic regression of Hamiltonian dynamical systems;DiPietro,2022

4. Physics-informed machine learning;Karniadakis;Nat. Rev. Phys.,2021

5. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations;Raissi;J. Comput. Phys.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3