p -brane Galilean and Carrollian geometries and gravities

Author:

Bergshoeff E AORCID,Figueroa-O’Farrill J MORCID,van Helden K S,Rosseel J,Rotko I J,ter Veldhuis T

Abstract

Abstract We study D-dimensional p-brane Galilean geometries via the intrinsic torsion of the adapted connections of their degenerate metric structure. These non-Lorentzian geometries are examples of G-structures whose characteristic tensors consist of two degenerate ‘metrics’ of ranks ( p + 1 ) and ( D p 1 ) . We carry out the analysis in two different ways. In one way, inspired by Cartan geometry, we analyse in detail the space of intrinsic torsions (technically, the cokernel of a Spencer differential) as a representation of G, exhibiting for generic (p, D) five classes of such geometries, which we then proceed to interpret geometrically. We show how to re-interpret this classification in terms of ( D p 2 )-brane Carrollian geometries. The same result is recovered by methods inspired by similar results in the physics literature: namely by studying how far an adapted connection can be determined by the characteristic tensors and by studying which components of the torsion tensor do not depend on the connection. As an application, we derive a gravity theory with underlying p-brane Galilean geometry as a non-relativistic limit of Einstein–Hilbert gravity and discuss how it gives a gravitational realisation of some of the intrinsic torsion constraints found in this paper. Our results also have implications for gravity theories with an underlying ( D p 2 )-brane Carrollian geometry.

Funder

Rijksuniversiteit Groningen

Publisher

IOP Publishing

Reference31 articles.

1. Une nouvelle limite non-relativiste du groupe de Poincaré;Lévy-Leblond;Ann. l’I.H.P. Phys. Theor.,1965

2. On an analogue of the Galilei group;Sen Gupta;Nuovo Cimento A,1966

3. On the intrinsic torsion of spacetime structures;Figueroa-O’Farrill,2020

4. Galilei and Lorentz structures on space-time: comparison of the corresponding geometry and physics;Künzle;Ann. Inst. Henri Poincare A,1972

5. Torsional Newton-Cartan geometry and lifshitz holography;Christensen;Phys. Rev. D,2014

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Non-relativistic intersecting branes, Newton-Cartan geometry and AdS/CFT;Journal of High Energy Physics;2024-07-24

2. Worldsheet formalism for decoupling limits in string theory;Journal of High Energy Physics;2024-07-11

3. Carroll fermions;SciPost Physics;2024-06-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3