Homomorphic encryption of the k=2 Bernstein–Vazirani algorithm

Author:

Fernández PabloORCID,Martin-Delgado Miguel AORCID

Abstract

Abstract We introduce a class of circuits that solve a particular case of the Bernstein–Vazirani recursive problem for second-level recursion. This class of circuits allows for the implementation of the oracle using a number of T-gates that grows linearly with the number of qubits in the problem. We find an application of this scheme to quantum homomorphic encryption (QHE), which is an important cryptographic technology useful for delegated quantum computing, allowing a remote server to perform quantum computations on encrypted quantum data, so that the server cannot know anything about the client’s data. Liang’s QHE schemes are suitable for circuits with a polynomial number of gates T / T . Thus, the simplified circuits we have constructed can be evaluated homomorphically in an efficient manner.

Funder

Ministerio de Ciencia e Innovación

Comunidad de Madrid and by the Recovery, Transformation, and Resilience Plan - Funded by the European Union - NextGenerationEU and Ministry of Economic Affairs Quantum ENIA project

Spanish MINECO

Army Research Office

CAM/FEDER

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3