Abstract
Abstract
Thermodynamic speed limits are a set of classical uncertainty relations that, so far, place global bounds on the stochastic dissipation of energy as heat and the production of entropy. Here, instead of constraints on these thermodynamic costs, we derive integral speed limits that are upper and lower bounds on a thermodynamic benefit—the minimum time for an amount of mechanical work to be done on or by a system. In the short time limit, we show how this extrinsic timescale relates to an intrinsic timescale for work, recovering the intrinsic timescales in differential speed limits from these integral speed limits and turning the first law of stochastic thermodynamics into a first law of speeds. As physical examples, we consider the work done by a flashing Brownian ratchet and the work done on a particle in a potential well subject to external driving.
Funder
National Science Foundation
Subject
General Physics and Astronomy,Mathematical Physics,Modeling and Simulation,Statistics and Probability,Statistical and Nonlinear Physics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献