Derivation of Liouville-like equations for the n-state probability density of an open system with thermalized particle reservoirs and its link to molecular simulation

Author:

Klein RupertORCID,Delle Site LuigiORCID

Abstract

Abstract A physico-mathematical model of open systems proposed in a previous paper (Delle Site and Klein 2020 J. Math. Phys. 61 083102) can represent a guiding reference in designing an accurate simulation scheme for an open molecular system embedded in a reservoir of energy and particles. The derived equations and the corresponding boundary conditions are obtained without assuming the action of an external source of heat that assures thermodynamic consistency of the open system with respect to a state of reference. However, in numerical schemes the temperature in the reservoir must be controlled by an external heat bath otherwise thermodynamic consistency cannot be achieved. In this perspective, the question to address is whether the explicit addition of an external heat bath in the theoretical model modifies the equations of the open system and its boundary conditions. In this work we consider this aspect and explicitly describe the evolution of the reservoir employing the Bergmann–Lebowitz statistical model of thermostat. It is shown that the resulting equations for the open system itself are not affected by this change and an example of numerical application is reviewed where the current result shows its conceptual relevance. Finally, a list of pending mathematical and modelling problems is discussed the solution of which would strengthen the mathematical rigour of the model and offer new perspectives for the further development of a new multiscale simulation scheme.

Funder

Deutsche Forschungsgemeinschaft

Publisher

IOP Publishing

Subject

General Physics and Astronomy,Mathematical Physics,Modeling and Simulation,Statistics and Probability,Statistical and Nonlinear Physics

Reference43 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3