Abstract
Abstract
We show how a relativistic Langevin equation can be derived from a Lorentz-covariant version of the Caldeira–Leggett particle-bath Lagrangian. In one of its limits, we identify the obtained equation with the Langevin equation used in contemporary extensions of statistical mechanics to the near-light-speed motion of a tagged particle in non-relativistic dissipative fluids. The proposed framework provides a more rigorous and first-principles form of the weakly-relativistic and partially-relativistic Langevin equations often quoted or postulated as ansatz in previous works. We then refine the aforementioned results to obtain a generalized Langevin equation valid for the case of both fully-relativistic particle and bath, using an analytical approximation obtained from numerics where the Fourier modes of the bath are systematically replaced with covariant plane-wave forms with a length-scale relativistic correction that depends on the space-time trajectory in a parabolic way. A new relativistic force term appears in this fully-relativistic limit, which has been derived here for the first time. We discuss the implications of the apparent breaking of space-time translation and parity invariance, showing that these effects are not necessarily in contradiction with the assumptions of statistical mechanics. The intrinsically non-Markovian character of the fully relativistic generalised Langevin equation derived here, and of the associated fluctuation–dissipation theorem, is also discussed.
Subject
General Physics and Astronomy,Mathematical Physics,Modeling and Simulation,Statistics and Probability,Statistical and Nonlinear Physics
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献