Quantum discord and entropic measures of two relativistic fermions

Author:

Kurashvili PodistORCID,Chotorlishvili LevanORCID

Abstract

Abstract In the present work, we study the interplay between relativistic effects and quantumness in the system of two relativistic fermions. In particular, we explore entropic measures of quantum correlations and quantum discord before and after application of a boost and subsequent Wigner rotation. We also study the positive operator-valued measurements (POVMs) invasiveness before and after the boosts. While the relativistic principle is universal and requires Lorentz invariance of quantum correlations in the entire system, we have found specific partitions where quantum correlations stored in particular subsystems are not invariant. We calculate quantum discords corresponding of the states before and after applying a boost, and observe that the state gains extra discord after the boost. When analyzing the invasiveness of the POVMs, we have found that the POVM applied to the initial entangled state reduces the discord to zero. However, discord of the boosted state survives after the same POVM. Thus we conclude that the quantum discord generated by Lorentz boost is robust concerning the protective POVM, while the measurement exerts an invasive effect on the discord of the initial state. Finally, we discuss potential implementation of the ideas of this work using top quarks as a benchmark scenario.

Publisher

IOP Publishing

Subject

General Physics and Astronomy,Mathematical Physics,Modeling and Simulation,Statistics and Probability,Statistical and Nonlinear Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quantum Discord and Steering in Top Quarks at the LHC;Physical Review Letters;2023-05-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3