The mean-field Bose glass in quasicrystalline systems

Author:

Johnstone DeanORCID,Öhberg PatrikORCID,Duncan Callum WORCID

Abstract

Abstract We confirm the presence of a mean-field Bose glass (BG) in 2D quasicrystalline Bose–Hubbard models. We focus on two models where the aperiodic component is present in different parts of the problem. First, we consider a 2D generalisation of the Aubry–André (AA) model, where the lattice geometry is that of a square with a quasiperiodic onsite potential. Second, we consider the randomly disordered vertex model, which takes aperiodic tilings with non-crystalline rotational symmetries, and forms lattices from the vertices and lengths of the tiles. For the disordered vertex models, the mean-field BG forms across large ranges of the chemical potential, and we observe no significant differences from the case of a square lattice with uniform random disorder. Small variations in the critical points in the presence of random disorder between quasicrystalline and crystalline lattice geometries can be accounted for by the varying coordination number and the different rotational symmetries present. In the 2D AA model, substantial differences are observed from the usual phase diagrams of crystalline disordered systems. We show that weak modulation lines can be predicted from the underlying potential and may stabilise or suppress the mean-field BG in certain regimes. This results in a lobe-like structure for the mean-field BG in the 2D AA model, which is significantly different from the case of random disorder. Together, the two quasicrystalline models studied in this work show that the mean-field BG phase is present, as expected for 2D quasiperiodic models. However, a quasicrystalline geometry is not sufficient to result in differences from crystalline realisations of the BG, whereas a quasiperiodic form of disorder can result in different physics, as we observe in the 2D AA model.

Funder

Horizon 2020 Framework Programme

Engineering and Physical Sciences Research Council

Det Frie Forskningsråd

Publisher

IOP Publishing

Subject

General Physics and Astronomy,Mathematical Physics,Modelling and Simulation,Statistics and Probability,Statistical and Nonlinear Physics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3