Symmetry-induced many-body quantum interference in chaotic bosonic systems: an augmented truncated Wigner method

Author:

Hummel QORCID,Schlagheck PORCID

Abstract

Abstract Although highly successful, the truncated Wigner approximation (TWA) does not account for genuine many-body (MB) quantum interference between different solutions of the mean-field equations of a bosonic MB system. This renders the TWA essentially classical, where a large number of particles formally takes the role of the inverse of Planck’s constant . The failure to describe genuine interference phenomena, such as localization and scarring in Fock space, can be seen as a virtue of this quasiclassical method, which thereby allows one to identify genuine quantum effects when being compared with ‘exact’ quantum calculations that do not involve any a priori approximation. A rather prominent cause for such quantum effects that are not accounted for by the TWA is the constructive interference between the contributions of symmetry-related trajectories, which would occur in the presence of discrete symmetries provided the phase-space distribution of the initial state and the observable to be evaluated feature a strong localization about the corresponding symmetry subspaces. Here we show how one can conceive an augmented version of the TWA which can account for this particular effect. This augmented TWA effectively amounts to complementing conventional TWA calculations by separate truncated Wigner simulations that are restricted to symmetric subspaces and involve weight factors that account for the dynamical stability of sampling trajectories with respect to perpendicular deviations from those subspaces. We illustrate the validity of this method at pre- as well as post-Ehrenfest time scales in prototypical Bose–Hubbard systems displaying chaotic classical dynamics, where it also reveals the existence of additional MB interference effects.

Funder

Université de Liège

Deutsche Forschungsgemeinschaft

Publisher

IOP Publishing

Subject

General Physics and Astronomy,Mathematical Physics,Modeling and Simulation,Statistics and Probability,Statistical and Nonlinear Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3