Abstract
Abstract
In the present work we provide a characterization of the ground states of a higher-dimensional quadratic-quartic model of the nonlinear Schrödinger class with a combination of a focusing biharmonic operator with either an isotropic or an anisotropic defocusing Laplacian operator (at the linear level) and power-law nonlinearity. Examining principally the prototypical example of dimension d = 2, we find that instability arises beyond a certain threshold coefficient of the Laplacian between the cubic and quintic cases, while all solutions are stable for powers below the cubic. Above the quintic, and up to a critical nonlinearity exponent p, there exists a progressively narrowing range of stable frequencies. Finally, above the critical p all solutions are unstable. The picture is rather similar in the anisotropic case, with the difference that even before the cubic case, the numerical computations suggest an interval of unstable frequencies. Our analysis generalizes the relevant observations for arbitrary combinations of Laplacian prefactor b and nonlinearity power p.
Subject
General Physics and Astronomy,Mathematical Physics,Modeling and Simulation,Statistics and Probability,Statistical and Nonlinear Physics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献