Critical percolation on the kagome hypergraph

Author:

Scullard Christian RORCID,Jacobsen Jesper LykkeORCID,Ziff Robert MORCID

Abstract

Abstract We study the percolation critical surface of the kagome lattice in which each triangle is allowed an arbitrary connectivity. Using the method of critical polynomials, we find points along this critical surface to high precision. This kagome hypergraph contains many unsolved problems as special cases, including bond percolation on the kagome and (3, 122) lattices, and site percolation on the hexagonal, or honeycomb, lattice, as well as a single point for which there is an exact solution. We are able to compute enough points along the critical surface to find a very accurate fit, essentially a Taylor series about the exact point, that allows estimations of the critical point of any system that lies on the surface to precision rivaling Monte Carlo and traditional techniques of similar accuracy. We find also that this system sheds light on some of the surprising aspects of the method of critical polynomials, such as why it is so accurate for certain problems, like the kagome and (3, 122) lattices. The bond percolation critical points of these lattices can be found to 17 and 18 digits, respectively, because they are in close proximity, in a sense that can be made quantitative, to the exact point on the critical surface. We also discuss in detail a parallel implementation of the method which we use here for a few calculations.

Funder

Lawrence Livermore National Laboratory

European Research Council

Publisher

IOP Publishing

Subject

General Physics and Astronomy,Mathematical Physics,Modeling and Simulation,Statistics and Probability,Statistical and Nonlinear Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A threshold model of cascading failure on random hypergraphs;Chaos, Solitons & Fractals;2023-08

2. Exact percolation probabilities for a square lattice: site percolation on a plane, cylinder, and torus;Journal of Physics A: Mathematical and Theoretical;2022-04-20

3. Kinetics and percolation: coke in heterogeneous catalysts;Journal of Physics A: Mathematical and Theoretical;2022-03-31

4. Percolation and the pandemic;Physica A: Statistical Mechanics and its Applications;2021-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3