Cross validation in sparse linear regression with piecewise continuous nonconvex penalties and its acceleration

Author:

Obuchi TomoyukiORCID,Sakata AyakaORCID

Abstract

Abstract We investigate the signal reconstruction performance of sparse linear regression in the presence of noise when piecewise continuous nonconvex penalties are used. Among such penalties, we focus on the smoothly clipped absolute deviation (SCAD) penalty. The contributions of this study are three-fold: we first present a theoretical analysis of a typical reconstruction performance, using the replica method, under the assumption that each component of the design matrix is given as an independent and identically distributed (i.i.d.) Gaussian variable. This clarifies the superiority of the SCAD estimator compared with in a wide parameter range, although the nonconvex nature of the penalty tends to lead to solution multiplicity in certain regions. This multiplicity is shown to be connected to replica symmetry breaking in the spin-glass theory, and associated phase diagrams are given. We also show that the global minimum of the mean square error between the estimator and the true signal is located in the replica symmetric phase. Second, we develop an approximate formula efficiently computing the cross-validation error without actually conducting the cross-validation, which is also applicable to the non-i.i.d. design matrices. It is shown that this formula is only applicable to the unique solution region and tends to be unstable in the multiple solution region. We implement instability detection procedures, which allows the approximate formula to stand alone and resultantly enables us to draw phase diagrams for any specific dataset. Third, we propose an annealing procedure, called nonconvexity annealing, to obtain the solution path efficiently. Numerical simulations are conducted on simulated datasets to examine these results to verify the consistency of the theoretical results and the efficiency of the approximate formula and nonconvexity annealing. The characteristic behaviour of the annealed solution in the multiple solution region is addressed. Another numerical experiment on a real-world dataset of Type Ia supernovae is conducted; its results are consistent with those of earlier studies using the formulation. A MATLAB package of numerical codes implementing the estimation of the solution path using the annealing with respect to in conjunction with the approximate CV formula and the instability detection routine is distributed in Obuchi (2019 https://github.com/T-Obuchi/SLRpackage_AcceleratedCV_matlab).

Publisher

IOP Publishing

Subject

General Physics and Astronomy,Mathematical Physics,Modelling and Simulation,Statistics and Probability,Statistical and Nonlinear Physics

Reference44 articles.

1. Matlab package of sparse linear regression with accelerated cross-validation under L1 or continuous nonconvex penalties;Obuchi,2019

2. Heuristics of instability and stabilization in model selection

3. Sparse Approximate Solutions to Linear Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3