Abstract
Abstract
A gauge invariant reformulation of nonrelativistic fermions in background magnetic fields is used to obtain the Laughlin and Jain wave functions as exact results in mean field theory (MFT). The gauge invariant framework trades the U(1) gauge symmetry for an emergent holomorphic symmetry and fluxes for vortices. The novel holomorphic invariance is used to develop an analytical method for attaching vortices to particles. Vortex attachment methods introduced in this paper are subsequently employed to construct the Read operator within a second quantized framework and obtain the Laughlin and Jain wave functions as exact results entirely within a mean-field approximation. The gauge invariant framework and vortex attachment techniques are generalized to the case of spherical geometry and spherical counterparts of Laughlin and Jain wave functions are also obtained exactly within MFT.
Subject
General Physics and Astronomy,Mathematical Physics,Modeling and Simulation,Statistics and Probability,Statistical and Nonlinear Physics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. The Schrödinger representation and 3D gauge theories;International Journal of Modern Physics A;2024-01-23