Abstract
Abstract
We calculate Wilson loops in lowest order of perturbation theory for triangular contours whose edges are circular arcs. Based on a suitable disentanglement of the relations between metrical and conformal parameters of the contours, the result fits perfectly in the structure predicted by the anomalous conformal Ward identity. The conformal remainder function depends in the generic 4D case on three cusp and on three torsion angles. The restrictions on these angles imposed by the closing of the contour are discussed in detail and also for cases in 3D and 2D.
Subject
General Physics and Astronomy,Mathematical Physics,Modeling and Simulation,Statistics and Probability,Statistical and Nonlinear Physics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献