Abstract
Abstract
Uncertainty relations in quantum mechanics express bounds on our ability to simultaneously obtain knowledge about expectation values of non-commuting observables of a quantum system. They quantify trade-offs in accuracy between complementary pieces of information about the system. In quantum multiparameter estimation, such trade-offs occur for the precision achievable for different parameters characterizing a density matrix: an uncertainty relation emerges between the achievable variances of the different estimators. This is in contrast to classical multiparameter estimation, where simultaneous optimal precision is attainable in the asymptotic limit. We study trade-off relations that follow from known tight bounds in quantum multiparameter estimation. We compute trade-off curves and surfaces from Cramér–Rao type bounds which provide a compelling graphical representation of the information encoded in such bounds, and argue that bounds on simultaneously achievable precision in quantum multiparameter estimation should be regarded as measurement uncertainty relations. From the state-dependent bounds on the expected cost in parameter estimation, we derive a state-independent uncertainty relation between the parameters of a qubit system.
Subject
General Physics and Astronomy,Mathematical Physics,Modeling and Simulation,Statistics and Probability,Statistical and Nonlinear Physics
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献