Abstract
Abstract
The Lindblad equation describes the time evolution of a density matrix of a quantum mechanical system. Stationary solutions are obtained by time-averaging the solution, which will in general depend on the initial state. We provide an analytical expression for the steady states of the Lindblad equation using the quantum jump unraveling, a version of an ergodic theorem, and the stationary probabilities of the corresponding discrete-time Markov chains. Our result is valid when the number of states appearing the in quantum trajectory is finite. The classical case of a Markov jump-process is recovered as a special case, and differences between the two are discussed.
Subject
General Physics and Astronomy,Mathematical Physics,Modeling and Simulation,Statistics and Probability,Statistical and Nonlinear Physics