Closed form expressions for the Green’s function of a quantum graph—a scattering approach

Author:

Lawrie Tristan,Gnutzmann SvenORCID,Tanner GregorORCID

Abstract

Abstract In this work we present a three step procedure for generating a closed form expression of the Green’s function on both closed and open finite quantum graphs with general self-adjoint matching conditions. We first generalize and simplify the approach by Barra and Gaspard (2001 Phys. Rev. E 65 016205) and then discuss the validity of the explicit expressions. For compact graphs, we show that the explicit expression is equivalent to the spectral decomposition as a sum over poles at the discrete energy eigenvalues with residues that contain projector kernel onto the corresponding eigenstate. The derivation of the Green’s function is based on the scattering approach, in which stationary solutions are constructed by treating each vertex or subgraph as a scattering site described by a scattering matrix. The latter can then be given in a simple closed form from which the Green’s function is derived. The relevant scattering matrices contain inverse operators which are not well defined for wave numbers at which bound states in the continuum exists. It is shown that the singularities in the scattering matrix related to these bound states or perfect scars can be regularised. Green’s functions or scattering matrices can then be expressed as a sum of a regular and a singular part where the singular part contains the projection kernel onto the perfect scar.

Funder

HORIZON EUROPE European Innovation Council

EPSRC

Publisher

IOP Publishing

Subject

General Physics and Astronomy,Mathematical Physics,Modeling and Simulation,Statistics and Probability,Statistical and Nonlinear Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3