Boosting the performance of anomalous diffusion classifiers with the proper choice of features

Author:

Kowalek PatrycjaORCID,Loch-Olszewska HannaORCID,Łaszczuk ŁukaszORCID,Opała JarosławORCID,Szwabiński JanuszORCID

Abstract

Abstract Understanding and identifying different types of single molecules’ diffusion that occur in a broad range of systems (including living matter) is extremely important, as it can provide information on the physical and chemical characteristics of particles’ surroundings. In recent years, an ever-growing number of methods have been proposed to overcome some of the limitations of the mean-squared displacements approach to tracer diffusion. In March 2020, the anomalous diffusion (AnDi) challenge was launched by a community of international scientists to provide a framework for an objective comparison of the available methods for AnDi. In this paper, we introduce a feature-based machine learning method developed in response to task 2 of the challenge, i.e. the classification of different types of diffusion. We discuss two sets of attributes that may be used for the classification of single-particle tracking data. The first one was proposed as our contribution to the AnDi challenge. The latter is the result of our attempt to improve the performance of the classifier after the deadline of the competition. Extreme gradient boosting was used as the classification model. Although the deep-learning approach constitutes the state-of-the-art technology for data classification in many domains, we deliberately decided to pick this traditional machine learning algorithm due to its superior interpretability. After the extension of the feature set our classifier achieved the accuracy of 0.83, which is comparable with the top methods based on neural networks.

Funder

NCN-DFG Beethoven

Publisher

IOP Publishing

Subject

General Physics and Astronomy,Mathematical Physics,Modeling and Simulation,Statistics and Probability,Statistical and Nonlinear Physics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3