Abstract
Abstract
Motivated by the consideration of integrable systems in three spatial dimensions in Euclidean space with integrals quadratic in the momenta we classify three-dimensional Abelian subalgebras of quadratic elements in the universal enveloping algebra of the Euclidean algebra under the assumption that the Casimir invariant
p
→
⋅
l
→
vanishes in the relevant representation. We show by means of an explicit example that in the presence of magnetic field, i.e. terms linear in the momenta in the Hamiltonian, this classification allows for pairs of commuting integrals whose leading order terms cannot be written in the famous classical form of Makarov et al [17]. We consider limits simplifying the structure of the magnetic field in this example and corresponding reductions of integrals, demonstrating that singularities in the integrals may arise, forcing structural changes of the leading order terms.
Funder
Istituto Nazionale di Alta Matematica ‘Francesco Severi’
Ministerstvo Školství, Mládeže a Tělovýchovy
Subject
General Physics and Astronomy,Mathematical Physics,Modeling and Simulation,Statistics and Probability,Statistical and Nonlinear Physics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献