Interference aided finite resonant response in an undamped forced oscillator

Author:

Haque ShihabulORCID,Bhattacharjee Jayanta K

Abstract

Abstract We apply perturbative techniques to a driven undamped sinusoidal oscillator at resonance. The angular displacement, θ, obeys the dynamics θ ¨ + ω 2 sin θ = H cos ω t . The linearized approximation gives a divergent response (at long times) but the nonlinear terms make the response finite. We address the nonlinearity-induced finiteness in two ways by separately treating the short and long time scales. At long times, we use the traditional perturbative techniques to extract two drive dependent behaviours—one, the amplitude of oscillation scales as ( H / ω 2 ) 1 / 3 and, two, the time period of the slow mode varies as ( H / ω 2 ) 2 / 3 . For the early time behaviour, on the other hand, we devise an alternate perturbative expansion where the successive terms get larger with the order of evaluation but have alternating signs. The alternating signs (phase differences) between these terms leads to adestructive interference like effect. A careful consideration of this destructive interference like effect between successive terms leads to a finite response which describes the initial behaviour of the amplitude of the response reasonably correctly. We further note that for larger drive values, the system seems to undergo a first order transitional behaviour with a sudden jump in the largest Lyapunov exponent

Publisher

IOP Publishing

Reference22 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3