Sub-cycle temporal evolution of light-induced electron dynamics in hexagonal 2D materials

Author:

Heide ChristianORCID,Boolakee TobiasORCID,Higuchi Takuya,Hommelhoff Peter

Abstract

Abstract Two-dimensional materials with hexagonal symmetry such as graphene and transition metal dichalcogenides are unique materials to study light-field-controlled electron dynamics inside of a solid. Around the K-point, the dispersion relation represents an ideal system to study intricately coupled intraband motion and interband (Landau-Zener) transitions driven by the optical field of phase-controlled few-cycle laser pulses. Based on the coupled nature of the intraband and interband processes, we have recently observed in graphene repeated coherent Landau-Zener transitions between valence and conduction band separated by around half an optical period of ∼1.3 fs (Higuchi et al Nature 550, 224 (2017)). Due to the low temporal symmetry of the applied laser pulse, a residual current density and a net electron polarization are formed. Here we show extended numerical data on the temporal evolution of the conduction band population of 2D materials with hexagonal symmetry during the light–matter interaction, yielding deep insights to attosecond-fast electron dynamics. In addition, we show that a residual ballistic current density is formed, which strongly increases when a band gap is introduced. Both, the sub-cycle electron dynamics and the resulting residual current are relevant for the fundamental understanding and future applications of strongly driven electrons in two-dimensional materials, including graphene or transition metal dichalcogenide monolayers.

Funder

H2020 European Research Council

Deutsche Forschungsgemeinschaft

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3