Abstract
Abstract
Mechanical forces and stiffness play key roles in the health and development of cells and tissue, but despite the physical connection between these quantities, they cannot be monitored in parallel in most cases. Here, we introduce a fully integrated microscope that combines a method for high-resolution cell force imaging (elastic resonator interference stress microscopy, ERISM) with non-contact mapping of the elastic properties of cells (via Brillouin microscopy). In order to integrate both techniques, we had to account for the strong back reflection on the surface of the microcavity used for ERISM measurements as well as the local destruction of the cavity under illumination for Brillouin microscopy measurements. Therefore, we developed an elastic optical microcavity with minimal absorption that can perform ERISM measurements without sustaining laser damage during Brillouin microscopy. Furthermore, an unequal-arm Michelson interferometer was designed to suppress the back reflection of the laser on the ERISM microcavity surface using division by amplitude interference to reduce the reflected light and enhance the Brillouin signal. We show the utility of our integrated microscope by simultaneously mapping cellular forces and Brillouin shifts in cultures of fibroblast cells.
Funder
Human Frontiers Science Program
H2020 European Research Council
EPSRC Doctoral Training Partnership
EPSRC
Alexander von Humboldt Foundation