Unravelling the role of iron and manganese oxides in colouring Late Antique glass by micro-XANES and micro-XRF spectroscopies

Author:

Gherardi FrancescaORCID,Hole Clément,Campbell Ewan,Cotte Marine,Tyson Rachel,Paynter Sarah

Abstract

Abstract This research aims to understand colouring technologies in 5th–7th centuries glass imported to Atlantic Britain by correlating the iron (Fe) and manganese (Mn) ratios and oxidation states with colour. Despite having a similar matrix chemical composition and concentrations of Fe and Mn oxides, these vessels display different colours (from green to yellow/amber, sometimes with purple streaks). Colour changes can be induced by controlling the reduction-oxidation reactions that occur during glass production, which are influenced by the raw materials, furnace and melt atmosphere, and recycling. To evaluate these parameters, reference glasses were prepared, following the composition of Late Antique archaeological glass recovered from Tintagel (UK) and Whithorn (UK). A corpus of archaeological and experimental glass samples was analysed using bulk Fe and Mn K-edge x-ray absorption near edge structure (XANES) spectroscopy, micro-XANES and micro x-ray fluorescence (μ-XRF) at beamline ID21, at the European Synchrotron Radiation Facility. Fe and Mn XANES spectra of the archaeological glass indicate that Fe and Mn are in a similar oxidation state in all the yellow samples, predominantly Fe3+ and Mn2+. No detectable difference in Mn and Fe oxidation state occurs in the purple streaks compared to the yellow glass bulk but μ-XRF maps of the distribution of Fe and Mn show that Mn is more concentrated in the purple streaks. This indicates that the purple colour of the streaks is mainly due to a higher Mn/Fe ratio and persistence of more oxidised manganese in the purple areas, even though it is difficult to detect. Many archaeological fragments appear pale green in transmitted light but amber in reflected light. XANES studies detected the presence of surface layers where manganese is more oxidised. This layer is believed to scatter transmitted and reflected light differently and might be responsible for the optical features of the archaeological glass.

Funder

Arts and Humanities Research Council

European Synchrotron Radiation Facility

Publisher

IOP Publishing

Reference49 articles.

1. Glass VESSELS in England AD 400–1100;Evison,2000

2. The great glass slab at Bet She’arim, Israel: an early Islamic glassmaking experiment?;Freestone;J. Glass Stud.,1999

3. Mediterranean coasts, cargoes of raw glass;Galili,2015

4. Primary glass workshops in Graeco-Roman Egypt: preliminary report on the excavations of the site of Beni-Salama, Wadi Natrun (2003, 2005–2009);Nenna,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3