Sparse recovery methodologies for quasi-distributed dynamic strain sensing

Author:

Shiloh LihiORCID,Shen-Tzur Roy,Eyal AvishayORCID,Giryes RajaORCID

Abstract

Abstract Quasi-distributed measurement of strain and/or temperature is often implemented using arrays of weakly reflecting fiber Bragg gratings (FBGs) whose reflection peaks are centered at the same nominal wavelength. The signals are obtained by measuring the phase difference between the reflections of consecutive FBGs. Typically, in such a system, the spatial resolution of the interrogator must be compatible with the spatial separation between consecutive FBGs. Insufficient resolution leads to an overlap of reflection peaks, a decrease in the differential-phase signal and poor sensitivity. In this paper, we study the use of two different sparsity based methodologies for improving the sensitivity of such quasi distributed acoustic sensing systems in the case where traditional signal processing approaches do not provide sufficient spatial resolution. These methods enable relaxing the requirements regarding the interrogator or, alternatively, reducing the needed separation between reflectors. Experimentally, these techniques were used to measure 1 kHz dynamic strain induced in a fiber segment between two discrete reflectors, located at the end of a 4 km long fiber. The separation between the reflectors was 18 m while the pulse (spatial) width was intentionally chosen bigger than that. It yielded approximately 5 dB increase in the measured signal compared to the traditional processing approach and an order of magnitude improvement in the sensitivity, 0.9 μ rad Hz .

Funder

H2020 European Research Council

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3