MetaPhyNet: intelligent design of large-scale metasurfaces based on physics-driven neural network

Author:

Su Jian Lin,You Jian WeiORCID,Chen Long,Yu Xin Yi,Yin Qing Chun,Yuan Guo Hang,Huang Si Qi,Ma QianORCID,Zhang Jia Nan,Cui Tie JunORCID

Abstract

Abstract Metasurface has garnered extensive attention across multiple disciplines owing to its profound capability in electromagnetic (EM) manipulations. To determine its EM characteristics accurately, full-wave simulations are essential. These simulations necessitate significant amounts of time and memory resources, hindering the efficiency of the design process. In this article, we propose MetaPhyNet, a novel physics-driven neural network based on temporal coupled-mode theory (CMT) to address the challenges of low efficiency and high memory consumption in large-scale metasurface design. In the proposed approach, a surrogate model is developed to achieve rapid prediction of the EM responses of ultra-large-scale metasurfaces. In comparison with the full-wave EM simulation, the proposed model reduces the simulation time of the ultra-large-scale metasurface by up to two orders of magnitude and the memory consumption by more than two orders of magnitude. Our proposed approach aims to enhance the efficiency and intelligence in metasurface design by leveraging the principles of CMT within a neural network framework. Through this innovative integration of physics-based modeling and machine learning, we seek to achieve significant advancements in the design efficiency of metasurfaces. We apply the proposed model to optimize the design of two metasurface absorbers to showcase the effectiveness of our proposed approach. Simulations and experimental results are provided to demonstrate the value and impact of our approach in addressing existing challenges in full-wave EM simulation-based design optimizations of metasurfaces.

Funder

111 Project

Research Fund of Southeast University

Fundamental Research Funds for the Central Universities

Natural Science Foundation of Jiangsu Province

National Natural Science Foundation of China

Research and Development Program of China

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3