Soliton self-compression and resonant dispersive wave emission in higher-order modes of a hollow capillary fibre

Author:

Brahms ChristianORCID,Travers John CORCID

Abstract

Abstract We investigate soliton self-compression and ultraviolet resonant dispersive wave emission in the higher-order modes of a gas-filled hollow capillary fibre (HCF). Our simple analytical scaling rules predict shorter required waveguides and different energy scales when moving from the fundamental to higher-order modes. Experimentally, we demonstrate soliton self-compression and ultraviolet dispersive wave emission in the double-lobe LP11 mode of an argon-filled HCF, which we excite by coupling into the fibre at oblique incidence. We observe the generation of ultraviolet dispersive waves which are frequency-shifted and more narrowband as compared to fundamental-mode generation due to the stronger modal dispersion, and a suppression of the supercontinuum between the dispersive wave and the pump pulse. With numerical simulations, we confirm the predictions of our scaling rules and find that the use of higher-order modes can suppress photoionisation and plasma effects even while allowing for much higher pulse energy to be used in the self-compression process. Our results add another degree of freedom for the design of hollow-waveguide systems to generate sub-cycle field transients and tuneable ultrashort laser pulses.

Funder

Engineering and Physical Sciences Research Council

H2020 European Research Council

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3