Principal component analysis in application to Brillouin microscopy data

Author:

Mahmodi Hadi,Poulton Christopher G,Leslie Mathew N,Oldham Glenn,Ong Hui Xin,Langford Steven J,Kabakova Irina VORCID

Abstract

Abstract Brillouin microscopy has recently emerged as a new bio-imaging modality that provides information on the microscale mechanical properties of biological materials, cells and tissues. The data collected in a typical Brillouin microscopy experiment represents the high-dimensional set of spectral information, i.e. each pixel within a 2D/3D Brillouin image is associated with hundreds of points of spectral data. Its analysis requires non-trivial approaches due to subtlety in spectral variations as well as spatial and spectral overlaps of measured features. This article offers a guide to the application of Principal Component Analysis (PCA) for processing Brillouin imaging data. Being unsupervised multivariate analysis, PCA is well-suited to tackle processing of complex Brillouin spectra from heterogeneous biological samples with minimal a priori information requirements. We point out the importance of data pre-processing steps in order to improve outcomes of PCA. We also present a strategy where PCA combined with k-means clustering method can provide a working solution to data reconstruction and deeper insights into sample composition, structure and mechanics.

Funder

ARC Centre of Excellence in Quantum Biotechnology

ARC Centre of Excellence in Optical Microcombs for Brealthrouhg Science

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3