Core opportunities for future optical fibers

Author:

Ballato JohnORCID,Gibson Ursula J

Abstract

Abstract Hair-thin strands of glass, intrinsically transparent and strong, of which many millions of kilometers are made annually, connect the world in ways unimaginable 50 years ago. What could another 50 years bring? That question is the theme of this Perspective. The first optical fibers were passive low-loss conduits for light, empowered by sophisticated sources and signal processing; a second advance was the addition of dopants utilizing atomic energy levels to promote amplification, and a third major initiative was physical structuring of the core-clad combinations, using the baseline silica material. Recent results suggest that the next major expansions in fiber performance and devices are likely to utilize different materials in the core, inhomogeneous structures on different length scales, or some combination of these. In particular, fibers with crystalline cores offer an extended transparency range with strong optical nonlinearities and open the door to hybrid opto-electronic devices. Opportunities for future optical fiber that derive from micro- and macro-structuring of the core phase offer some unique possibilities in ‘scattering by design’.

Funder

Swedish Research Council

Knut and Alice Wallenberg Foundation

J. E. Sirrine Foundation

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3