Abstract
Abstract
Lithium niobate on insulator (LNOI) material has great potential for photonic integrated circuits, providing substantial versatility in design of various integrated components. To properly use these components in the implementation of different quantum protocols, photons with different properties are required. In this paper, we theoretically demonstrate a flexible source of correlated photons built on the LNOI waveguide with a special geometry. This source is based on the parametric down-conversion (PDC) process, in which the signal and idler photons are generated at the telecom wavelength and have different spatial profiles and polarizations, but the same group velocities. Distinguishability in polarizations and spatial profiles facilitates the routing and manipulating individual photons, while the equality of their group velocities leads to the absence of temporal walk-off between photons. We show how the spectral properties of the generated photons and the number of their frequency modes can be controlled depending on the pump characteristics and the waveguide length. Finally, we discuss special regimes, in which narrowband light with strong frequency correlations and polarization-entangled Bell states are generated at the telecom wavelength.
Funder
Deutsche Forschungsgemeinschaft
Subject
Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献