Wavelength-stabilized DBR high-power diode laser

Author:

Paoletti R,Coriasso CORCID,Meneghini G,Gaziano F,Gotta P,Codato S,Maina A,Morello G,De Melchiorre P,Pippione G,Riva E,Rosso M,Stano A,Gattiglio M

Abstract

Abstract This paper reports a wavelength-stabilized high-power diode laser emitting up to 14 W CW in the 9xx nm range. Wavelength stabilization is achieved by a distributed Bragg reflector (DBR) monolithically integrated in the diode laser chip. Key features are identical layer epitaxy (ILE) and the use of a multiple-order electron beam lithography (EBL) optical confining grating. ILE avoids any regrowth or complex technology processes, while EBL multiple-order grating allows narrow-band back reflection and effective lateral optical confinement, and makes it possible to stabilize multiple wavelengths on the same wafer using a manufacturable and reliable technology. DBR diode lasers with different pitches, whose wavelengths were 3 nm spaced, were fabricated and high spectral purity (95% optical power within about 0.6 nm) and wavelength stability were measured. Moreover, the high uniformity of performances across the wafer with different emitted wavelengths demonstrates the maturity of the proposed technology for high-yield, high-volume laser diode production for wavelength-stabilized applications. A multi-emitter module, including ten DBR diode lasers, collimating and focusing optics, showed 100 W CW wavelength-stabilized output power at 14 A in a 135 μm core optical fiber within 0.17 NA. Single diode lasers, or multi-emitter modules, can be used to combine high-power optical beams by wavelength division multiplexing (WDM) using dichroic optics, scaling up beam power to the kW range and maintaining optical beam quality.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3