Abstract
Abstract
Miniaturized environments have emerged as an excellent alternative to evaluate and understand biological mechanisms. These systems are able to simulate macroenvironments with high reproducibility, achieving many results in a short time of analysis. However, microenvironments require specific architectures that can be reached using laser micromachining techniques, such as two-photon polymerization (TPP). This technique has many advantages, allowing the production of environments without shape limitation and with special features. In this work, aided by the TPP technique, we produce different arrays of microstructures, fabricated using acrylate-based materials, in order to evaluate the growth and development of the Komagataeibacter xylinus bacteria, the micro-organism responsible for producing bacterial cellulose (BC), a natural polymer with several biological applications. BC grown in microenvironments presents similar features to those of biofilm formed in macroenvironments, maintaining their attractive properties. In addition, due to the high optical quality and mechanical resistance of the BC matrices, we use these films as flexible substrates in TPP experiments, obtaining promising results for tissue engineering studies.
Funder
Fundação de Amparo à Pesquisa do Estado de São Paulo
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Subject
Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献