Abstract
Abstract
A highly selective and sensitive assay of Al(III) using ratiometric fluorescence enhancement is reported in an aqueous solution. The probe (named RS5) exhibits a red-shift of 54 nm upon binding with Al(III) ion. The significant enhancement response of RS5 at 481 nm is attributed to the formation of a 1:1 complex between the probe and Al(III), wherein RS5 acts as a tridentate NNN-donor ligand. The complexation process is ascertained by 1H, 13C, and 27Al NMR and HR-MS spectral techniques. The binding constant of the complex is determined to be 1.3 × 105 M−1. The ratiometric change in fluorescence upon complexation with Al(III) is ascribed to an increase in intramolecular charge transfer (ICT) transition along with chelation enhanced fluorescence (CHEF) processes. The probe can be applied for monitoring Al(III) in a pH range of 6–8. The limit of detection (LOD) of RS5 for the examination of Al(III) is found to be 0.3 μM. With an aim to understand the sensing behavior of RS5, the optical properties of the probe and its Al(III) complex are investigated using density functional theory (DFT) and time-dependent density functional theory (TD-DFT) methods. The probe is successfully employed for the determination of Al(III), with very high recovery percentages, in natural matrices like deep well water, tap water, drinking water, pond water, river water, bovine serum albumin (BSA) solution and blood serum.
Subject
Spectroscopy,General Materials Science,Instrumentation,Atomic and Molecular Physics, and Optics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献