PVDF-directed synthesis, stability and anion exchange of cesium lead bromide nanocrystals

Author:

Panda Suvadeep,Soni Amritansh,Gupta Vidhu,Niranjan Raghvendra,Panda DebashisORCID

Abstract

Abstract Photoluminescent perovskite nanocrystals are mostly used along with base materials such as polymers for material processing and large-scale production purpose. However, the role of polymer in crystal structure engineering and thereby dictating the emission properties of lead halide perovskite nanocrystals has been poorly understood. First, we have developed a polymer-directed antisolvent method for synthesis of halide perovskite crystals at room temperature and observed that the thermodynamic stabilities of crystals drive the formation of perovskite composite crystal of orthorhombic Cs4PbBr6 and monoclinic CsPbBr3. Surprisingly, hydrophobic polyvinylidene fluoride (PVDF) can reduce the size of perovskite crystals to nano dimensions even at room temperature. On the other hand, perovskite nanocrystals, CsPbBr3 synthesized by modified hot-injection method undergo rapid encapsulation in PVDF matrices. The size of the encapsulated nanocrystal in PVDF matrices ranges in 88 ± 32 nm. We have illustrated that there are three types of radiative recombination predominantly operative in nanocrystals-doped polymer- (i) surface defect caused radiative recombination (0.6–3 ns), (ii) exciton recombination (3–15 ns), and (iii) shallow trap assisted recombination (10–50 ns). The interface created at nanocrystal and polymer plays a decisive role in populating the shallow trap states in perovskite-polymer nanocomposite. These nanocomposites undergo fast halide exchange in aqueous hydroiodic acid solution and possess remarkable enhancement of water-/photo-stability. This research would pave way for their greater use in hydrogen production and light-emitting devices.

Funder

Rajiv Gandhi Institute of Petroleum Technology

Publisher

IOP Publishing

Subject

Spectroscopy,General Materials Science,Instrumentation,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3