Fluorescence correlation spectroscopy based insights into diffusion in electrochemical energy systems

Author:

Tyagi ViploveORCID,Debnath Bharati,Patrike Apurva,Ogale Satishchandra,Patil ShivprasadORCID

Abstract

Abstract Fluorescence Correlation Spectroscopy, a commonly used technique for measuring diffusion of biomolecules and tracer dyes in different solvents, is employed to characterise the local transport properties in battery electrolytes. Diffusion of ions, a major limiting factor in battery capacity and charging rates, depends on the local interactions and structuredness of the electrolytic species. Structuredness in the electrolyte results from typical solvation behaviour of diffusing ions/molecules leading to long-range interactions. In this work, we have used FCS to measure tracer diffusion of Coumarin 343 in a mixture of Ethylene Carbonate (EC) and Dimethyl Carbonate (DMC), commonly used as electrolyte solvent in Li-ion batteries. The measured diffusion is found to depend on lithium-ion concentrations. It is found that the addition of LiPF6 to an EC-DMC equimolar mixture slows down tracer diffusion significantly. Indeed, the bulk viscosity of the electrolyte added with LiPF6 salt varies with salt concentration. However, the change in bulk viscosity (global behaviour) at high ion concentrations does not match the one inferred from applying Stoke-Einstein’s relation to the diffusion data (local behaviour). This indicates that the homogeneity of the electrolyte does not extend spatially to molecular scales around the diffusing tracer molecule. Measurements made on coin cells prepared with different concentrations of LiPF6 show battery performance limited at higher concentrations, characterized by specific capacity loss at faster charging cycles. This limitation is directly related to the local behaviour of the electrolyte as quantified by measurements of tracer diffusion, which slows down, which remarkably outweighs the advantage of high carrier densities.

Funder

Department of Science and Technology India nanomission Grant

Publisher

IOP Publishing

Subject

Spectroscopy,General Materials Science,Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3