Optimising correlative super resolution and atomic force microscopies for investigating the cellular cytoskeleton

Author:

Hargreaves Riley B,Rozario Ashley M,McCoy Thomas M,Meaney Shane PORCID,Funston Alison MORCID,Tabor Rico FORCID,Whelan Donna RORCID,Bell Toby D MORCID

Abstract

Abstract Correlative imaging methods can provide greater information for investigations of cellular ultra-structure, with separate analysis methods complementing each other's strengths and covering for deficiencies. Here we present a method for correlative applications of super resolution and atomic force microscopies, optimising the sample preparation for correlative imaging of the cellular cytoskeleton in COS-7 cells. This optimisation determined the order of permeabilisation and fixation, the concentration of Triton X-100 surfactant used and time required for sufficient removal of the cellular membrane while maintaining the microtubule network. Correlative SMLM/AFM imaging revealed the different information that can be obtained through each microscopy. The widths of microtubules and microtubule clusters were determined from both AFM height measurements and Gaussian fitting of SMLM intensity cross sections, these were then compared to determine the orientation of microtubules within larger microtubule bundles. The ordering of microtubules at intersections was determined from the AFM height profiles as each microtubule crosses the other. The combination of both microtubule diameter measurements enabled greater information on their structure to be found than either measurement could individually.

Funder

National Health and Medical Research Council

Australian Research Council

Publisher

IOP Publishing

Subject

Spectroscopy,General Materials Science,Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Live-Cell SOFI Correlation with SMLM and AFM Imaging;ACS Bio & Med Chem Au;2023-03-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3