Novel methods to extract and quantify sensors based on single wall carbon nanotube fluorescence from animal tissue and hydrogel-based platforms

Author:

Hofferber EricORCID,Meier Jakob,Herrera Nicolas,Stapleton Joseph,Ney Kayla,Francis Becca,Calkins Chris,Iverson NicoleORCID

Abstract

Abstract Sensors that can quickly and accurately diagnose and monitor human health are currently at the forefront of medical research. Single walled carbon nanotube (SWNT) based optical biosensors are a growing area of research due to the high spatiotemporal resolution of their near infrared fluorescence leading to high tissue transparency and unparalleled sensitivity to analytes of interest. Unfortunately, due to the functionalization requirements of SWNT-based sensors, there are concerns surrounding accumulation and persistence when applied in vivo. In this study, we developed protocols to extract and quantify SWNT from complex solutions and show an 89% sensor retention by hydrogel platforms when implanted in vivo. Animal tissues of interest were also extracted and probed for SWNT content showing no accumulation (0.03 mg l−1 SWNT detection limit). The methods developed in this paper demonstrated one avenue for applying SWNT sensors in vivo without concern for accumulation.

Funder

Animal Sciences Department - UNL

Biological Systems Engineering Department - UNL

Publisher

IOP Publishing

Subject

Spectroscopy,General Materials Science,Instrumentation,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3