Review on long afterglow nanophosphors, their mechanism and its application in round-the-clock working photocatalysis

Author:

Bidwai Dipti,Kumar Sahu Niroj,Dhoble S J,Mahajan AshutoshORCID,Haranath D,Swati GORCID

Abstract

Abstract Semiconductor assisted photocatalysis is one of the most efficient methods for the degradation of complex organic dyes. A major limiting factor of semiconductor assisted photocatalysis is the requirement of a continuous source of light to perform a redox reaction. One of the upcoming solutions is photon energy-storing long afterglow/persistent phosphors. They are an unusual kind of rechargeable, photon energy capturing/trapping phosphors that can trap charge carriers (electrons/holes) in their meta-stable energy levels, thereby resulting in persistent luminescence. Persistence luminescence from such materials can range from minutes to hours. The coupling of long afterglow phosphors (LAP) with the conventional semiconductor is a promising way to support the photocatalytic process even in dark. In addition, dissimilar band structures of LAPs and semiconductor results in formation of heterojunction which further suppresses the recombination of charge. Such an encouraging idea of LAP for round-the-clock working photocatalytic system is in its premature stage; which is required to be investigated fully. Thus, we present a state-of-art review on the potential materials for assisting round-the-clock photocatalysis, trapping-detrapping mechanism in LAP materials, fabrication strategies and their associated characterization tools. Review also covers LAP materials and their photocatalytic mechanism briefly.

Funder

Science and Engineering Research Board

Publisher

IOP Publishing

Subject

Spectroscopy,General Materials Science,Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3