Ratiometric fluorescence detection of the angiotensin-converting enzyme via single-excitation and double-emission biomass-derived carbon quantum dots

Author:

Zhan Zhihua,Mao Huihui,Xue MingyueORCID,Han Guocheng,Zhou Guohua,Zhang Ying

Abstract

Abstract Efficient and rapid detection of angiotensin-converting enzyme (ACE) activity is important for preventing hypertension and the discovery of new angiotensin-converting enzyme inhibitors (ACEI). In this work, a single-excitation and double-emission biomass-derived carbon quantum dots (CQDs) was prepared and applied for ratiometric fluorescence detection of ACE. Fresh banyan leaves were extracted with ethanol and acetone, and the extracted solution was used as the precursor to produce the carbon quantum dots (BL-CQDs) with single-excitation and double-emission properties. The synthesized BL-CQDs is about 1.7 nm, has a graphene-like structure, contains a variety of hydrophilic functional groups on the surface, and has good fluorescence properties. Its fluorescence intensity ratio (I677/I460) is linear with ACE activity in the range of 0.02–0.8 U l−1. The regression equation is △F=2.5371 C ACE -0.0311. The method was successfully applied to the determination of ACE activity in pig lung and human serum, and the inhibitory efficiency of the flavonoid extract and captopril tablets on ACE activity was also investigated, which can be applied to the screening of ACEI. The survival rate and fluorescence imaging of Bel-7404 cells under the condition of high concentration BL-CQDs showed BL-CQDs had low cytotoxicity and good biocompatibility. These results indicate that the BL-CQDs can be used as an excellent fluorescent probe, providing a new method for screening ACE activity and plant-derived ACEI.

Funder

National Natural Science Foundation of China

Nature Science Foundation of Guangxi Province

Project of Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes

Project of Education Department of Guangdong Province

Publisher

IOP Publishing

Subject

Spectroscopy,General Materials Science,Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3