Abstract
Abstract
We report on a compact and spectrally intense extreme-ultraviolet (XUV) source, which is based on high-harmonic generation (HHG) driven by 395 nm pulses. In order to minimize the XUV virtual source size and to maximize the XUV flux, HHG is performed several Rayleigh lengths away from the driving laser focal plane in a high-density gas jet. As a result, a high focused XUV intensity of 5 × 1013 W cm−2 is achieved, using a beamline with a length of only two meters and a modest driving laser pulse energy of 3 mJ. The high XUV intensity is demonstrated by performing a nonlinear ionization experiment in argon, using an XUV spectrum that is dominated by a single harmonic at 22 eV. Ion charge states up to Ar3+ are observed, which requires the absorption of at least four XUV photons. The high XUV intensity and the narrow bandwidth are ideally suited for a variety of applications including photoelectron spectroscopy, the coherent control of resonant transitions and the imaging of nanoscale structures.
Subject
Condensed Matter Physics,Atomic and Molecular Physics, and Optics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献