Theory of polarization-averaged core-level molecular-frame photoelectron angular distributions: II. Extracting the x-ray-induced fragmentation dynamics of carbon monoxide dication from forward and backward intensities

Author:

Ota F,Hatada KORCID,Sébilleau D,Ueda K,Yamazaki K

Abstract

Abstract Recent developments in high-repetition-rate x-ray free electron lasers (XFELs) such as the European XFEL and the LSCS-II, combined with coincidence measurements using the COLTRIMS-reaction microscope, are now opening a door to realize the long-standing dream of creating molecular movies of photo-induced chemical reactions in gas-phase molecules. In this paper, we propose a new theoretical method to experimentally visualize the dissociation of diatomic molecules via time-resolved polarization-averaged molecular-frame photoelectron angular distribution (PA-MFPAD) measurements using the COLTRIMS-reaction microscope and the two-color XFEL pump–probe set-up. We used first- and second-order scattering theory within the muffin-tin approximation, which is valid for a sufficiently high kinetic energy of photoelectrons, typically above 100 eV, and for long bond lengths. This leads to a simple extended x-ray absorption fine structure (EXAFS)-type formula for the forward and backward scattering peaks in the PA-MFPAD structure. This formula relies only on three semi-empirical parameters obtainable from the time-resolved measurements. It can be used as a ‘bond length ruler’ on experimental results. The accuracy and applicability of the new ruler equation are numerically examined against the PA-MFPADs of CO2+ calculated with full-potential multiple scattering theory as a function of the C–O bond length reported in the preceding work (Ota et al J. Phys. B: At. Mol. Opt.). The bond lengths retrieved from the PA-MFPADs via our EXAFS-like formula coincide within an accuracy of 0.1 Å with the original C–O bond lengths used in the reference ab initio PA-MFPADs. We expect time-resolved PA-MFPADs to become a new attractive tool to make molecular movies visualizing intramolecular reactions.

Funder

Cooperative Research Program of ‘Network Joint Research Center for Materials and Devices’

Japan Society for the Promotion of Science

Building of Consortia for the Development of Human Resources in Science and Technology, MEXT

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Atomic and Molecular Physics, and Optics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Separation of photoionization and measurement-induced delays;Science Advances;2024-01-26

2. In-line attosecond photoelectron holography for single photon ionization;Physical Chemistry Chemical Physics;2024

3. Photoelectron Diffraction;Structural Dynamics with X-ray and Electron Scattering;2023-12-20

4. State‐selected photo‐recombination cross sections of H‐like ions in the KLL resonant energy range;International Journal of Quantum Chemistry;2023-09-13

5. Single-photon ionization of aligned H 2+ with near-ionization-threshold photon energy;New Journal of Physics;2023-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3