Abstract
Abstract
The buildup processes of the light-induced states (LISs) in attosecond transient absorption spectroscopy are studied by solving the time-dependent Schrödinger equation and compared with the quasistatic Floquet theory, revealing a time lag of the maximal shift and strongest absorbance of the LIS with respect to the zero delay that is referred to as the buildup time. We analytically derive a scaling law for the buildup time that confirms the numerical results over a wide range of detunings. Our theory verifies the commonly accepted scenario of nearly instantaneous response of matter to light if the pump field is blue-detuned, but some differences are found in the near-resonant and red-detuning cases. Implications of the buildup time in petahertz optoelectronics are discussed.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Subject
Condensed Matter Physics,Atomic and Molecular Physics, and Optics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献