High-precision temperature measurement with adjustable operating range based on weak measurement

Author:

Liu Miaomiao,Li Hongjing,Wang Gongling,Xia Binke,Huang JingzhengORCID,Zeng Guihua

Abstract

Abstract High-precision temperature measurement with adjustable operating range is investigated and experimentally demonstrated based on weak measurement in the frequency domain. The operating range of measurement is precisely modulated by introducing a dynamic extra time delay to the post-selection pumped by a femtosecond laser. By choosing appropriate nonlinear materials and the attenuation, the resolution of the optimized extra time delay can be improved by two orders of magnitude over that of a traditional phase delay compensator. Considering the influence of noise in the experiment, the highest precision of 8.03 × 10−7 °C can be achieved by using a currently available spectrometer. Moreover, the average sensitivity can reach to 38 nm/°C. Taking advantage of the high precision and adjustable operating range, the proposed method has great potential applications in high-precision temperature measurements.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Atomic and Molecular Physics, and Optics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3