R-matrix calculations for opacities: I. Methodology and computations

Author:

Pradhan A KORCID,Nahar S NORCID,Eissner W

Abstract

Abstract An extended version of the R-matrix methodology is presented for calculation of radiative parameters for improved plasma opacities. Contrast and comparisons with existing methods primarily relying on the distorted wave approximation are discussed to verify accuracy and resolve outstanding issues, particularly with reference to the opacity project (OP). Among the improvements incorporated are: (i) large-scale Breit–Pauli R-matrix calculations for complex atomic systems including fine structure, (ii) convergent close coupling wave function expansions for the (e + ion) system to compute oscillator strengths and photoionization cross sections, (iii) open and closed shell iron ions of interest in astrophysics and experiments, (iv) a treatment for plasma broadening of autoionizing resonances as function of energy-temperature-density dependent cross sections, (v) a ‘top-up’ procedure to compare convergence with R-matrix calculations for highly excited levels, and (vi) spectroscopic identification of resonances and bound (e + ion) levels. The present R-matrix monochromatic opacity spectra are fundamentally different from OP and lead to enhanced Rosseland and Planck mean opacities. An outline of the work reported in other papers in this series and those in progress is presented. Based on the present re-examination of the OP work, opacities of heavy elements might require revisions in high temperature-density plasma sources.

Funder

Ohio Supercomputer Center

NASA

Department of Energy

US National Science Foundation

Publisher

IOP Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3