R-Matrix calculations for opacities: II. Photoionization and oscillator strengths of iron ions Fe xvii, Fe xviii and Fe xix

Author:

Nahar S NORCID,Zhao L,Eissner W,Pradhan A KORCID

Abstract

Abstract Iron is the dominant heavy element that plays an important role in radiation transport in stellar interiors. Owing to its abundance and large number of bound levels and transitions, iron ions determine the opacity more than any other astrophysically abundant element. A few iron ions constitute the abundance and opacity of iron at the base of the convection zone (BCZ) at the boundary between the solar convection and radiative zones and are the focus of the present study. Together, Fe xvii, Fe xviii and Fe xix represent 85% of iron ion fractions, 20%, 39% and 26% respectively, at the BCZ physical conditions of temperature T ∼ 2.11 × 10 6  K and electron density N e = 3.1 × 10 22 c.c. We report the most extensive R-matrix atomic calculations for these ions for bound–bound and bound–free transitions, the two main processes of radiation absorption. We consider wavefunction expansions with 218 target or core ion fine structure levels of Fe xviii for Fe xvii, 276 levels of Fe xix for Fe xviii, in the Breit–Pauli R-matrix (BPRM) approximation, and 180 LS terms (equivalent to 415 fine structure levels) of Fe xx for Fe xix calculations. These large target expansions, which include core ion excitations to n = 2,3,4 complexes, enable accuracy and convergence of photoionization cross sections, as well as the inclusion of high lying resonances. The resulting R-matrix datasets include 454 bound levels for Fe xvii, 1,174 levels for Fe xviii, and 1,626 for Fe xix up to n 10 and l = 0–9. Corresponding datasets of oscillator strengths for photoabsorption are: 20 951 transitions for Fe xvii, 141 869 for Fe xviii, and 289 291 for Fe xix. Photoionization cross sections have been obtained for all bound fine structure levels of Fe xvii and Fe xviii, and for 900 bound LS states of Fe xix. Selected results demonstrating prominent characteristic features of photoionization are presented, particularly the strong Seaton photoexcitation-of-core resonances formed via high-lying core excitations with Δ n = 1 that significantly impact bound–free opacity.

Funder

Ohio Supercomputer Center

Ohio State University

Publisher

IOP Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3