Positronium emission from MgO smoke nanocrystals

Author:

Gurung L,Alonso A M,Babij T J,Cooper B S,Shluger A LORCID,Cassidy D BORCID

Abstract

Abstract We report experiments in which positronium (Ps) atoms were created in a thick layer of MgO smoke powder deposited on a thin silicon nitride substrate. The experimental arrangement was such that a positron beam could be implanted directly into the top of the MgO layer or be transmitted through the substrate, allowing Ps to be produced within ≈100 nm or 30 μm of the powder-vacuum interface. The transverse kinetic energy of Ps atoms emitted into vacuum was measured via the Doppler broadening of 13S 1 2 3 P J transitions, and found to be E x ≈ 350 meV, regardless of how far Ps atoms had traveled through the powder layer. Our data are not consistent with the model in which energetic Ps atoms emitted into the internal free volume of a porous material are cooled via multiple surface collisions, and instead indicate that in nanocrystals lower energy Ps is generated, with negligible subsequent cooling in the large open volumes of the powder. Our experiments also demonstrate that SiN substrates coated with MgO smoke can provide a simple and inexpensive method for producing Ps transmission targets.

Funder

EPSRC

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Atomic and Molecular Physics, and Optics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3